In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

This activity offers an introduction to working with Geographic Information Systems (GIS) by using field data on the Urban Heat Island Effect that was collected by students. The field data is entered in the GIS, displayed in a map, and analyzed.

In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation (THC) in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

This interactive world map shows the impact of a global temperature rise of 4 degrees Celsius on a variety of factors including agriculture, marine life, fires, weather patterns, and health. Hot Spots can be clicked on to get more specific information about the problems in different regions.

Pages

Hide [X]