This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

This short NASA video focuses on the Aquarius satellite, launched on June 10, 2011 to observe how variations in ocean salinity relate to climatic changes. By measuring salinity globally, Aquarius shows the ocean's role in climate change and climate's effects on ocean circulation.

This interactive world map shows the impact of a global temperature rise of 4 degrees Celsius on a variety of factors including agriculture, marine life, fires, weather patterns, and health. Hot Spots can be clicked on to get more specific information about the problems in different regions.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes.

This animation shows predicted changes in temperature across the globe, relative to pre-industrial levels, under two different emissions scenarios in the COP 17 climate model. The first is with emissions continuing to increase through the century. The second is with emissions declining through the century.

In this JAVA-based interactive modeling activity, students are introduced to the concept of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

This video provides an overview of how computer models work. It explains the process of data assimilation, which is necessary to ensure that models are tied to reality. The video includes a discussion of weather models using the Goddard Earth Observing System (GEOS-5) model and climate models using the MERRA (Modern Era Retrospective Analysis for Research and Applications) technique.

This activity offers an introduction to working with Geographic Information Systems (GIS) by using field data on the Urban Heat Island Effect that was collected by students. The field data is entered in the GIS, displayed in a map, and analyzed.

This interactive National Weather Service interactive visualization includes outlook maps for 6-10 day, 8-14 day, 1 month, and 3 month temperature and precipitation patterns in the US, as well as a hazards outlook and drought information.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

Pages