The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

This multi-week project begins with a measurement of baseline consumptive behavior followed by three weeks of working to reduce the use of water, energy, high-impact foods, and other materials. The assignment uses an Excel spreadsheet that calculates direct energy and water use as well as indirect CO2 and water use associated with food consumption. After completing the project, students understand that they do indeed play a role in the big picture.

In this classroom activity, students analyze regional energy usage data and their own energy bills to gain an understanding of individual consumption, regional uses, costs, and sources of energy.

In this activity, students collect data and analyze the cost of using energy in their homes and investigate one method (switching to compact fluorescent light bulbs) of reducing energy use. This activity provides educators and students with the means to connect 'energy use consequences' and 'climate change causes.' Through examining home energy use and calculating both pollution caused by the generation of electricity and potential savings, students can internalize these issues and share information with their families.

Students calculate the cost of the energy used to operate a common three-bulb light fixture. They then compare the costs and amount of CO2 produced for similar incandescent and compact fluorescent light bulbs. Students also do a short laboratory activity to visualize why two bulbs, which give off the same amount of light, use different amounts of electrical energy.

Students explore their own Ecological Footprint in the context of how many Earths it would take if everyone used the same amount of resources they did. They compare this to the Ecological Footprint of individuals in other parts of the world and to the Ecological footprint of a family member when they were the student's age.

Students take a Home Energy Quiz from the Energy Star Program to identify home improvements that could make their homes more energy efficient. The resource includes follow-up information about energy-saving activities to reduce the cost of heating and cooling, supporting the student examination of energy use, energy efficiency and conservation.

Students investigate how much greenhouse gas (carbon dioxide and methane) their family releases into the atmosphere each year and relate it to climate change. To address this, students use the Environmental Protection Agency's Personal Emissions Calculator to estimate their family's greenhouse gas emissions and to think about how their family could reduce those emissions.

Pages

Hide [X]