In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This video, along with a background essay, focuses on impacts of climate change on the lives of Native Alaskans around Barrow, Alaska. Specific changes include the timing of the changes in the formation and breakout of sea ice and the impacts on subsistence living.

This humorous video suggests what might happen if a weather forecaster reported the weather in the context of climate change. There is a sharp contrast between the anchor focusing on short-term local concerns and the weather forecaster describing what is happening on a long-term global basis.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

This carbon calculator, developed by the EPA, guides students in calculating their carbon footprint and then using that information to make decisions about how to reduce their carbon emissions.

This video is narrated by climate scientist Richard Alley. It examines studies US Air Force conducted over 50 years ago on the warming effects of CO2 in the atmosphere and how that could impact missile warfare. The video then focuses on the Franz Josef glacier in New Zealand; the glacier is used to demonstrate glaciers formation, depth of snow fall in the past, and understand atmospheric gases and composition during the last Ice Age. Supplemental resources are available through the website.

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

In this video the Pentagon's focus on climate change is described as a significant factor as the military examines potential risks, strategic responses, and impacts of climate change on future military and humanitarian missions. In 2010, for the first time, the Pentagon focused on climate change as a significant factor in its Quadrennial Defense Review of potential risks and strategic responses. Rear Admiral David Titley, Oceanographer of the Navy, explains why the US military sees clear evidence of climate change, and how those changes will affect future military and humanitarian missions.